
Chainspotting 2:
The Unofficial
Sequel to the 2018
Talk
"Chainspotting"
Building an Exploit Chain with Logic Bugs
for Pwn2Own Ireland 2024

“Yogehi” (@yogehi) on social media

• At the time of this research -
Managing Principal Security
Consultant at NCC Group

• Doing security stuff in Japan now

• Occasionally does a phone hack

• Been attempting Mobile Pwn2Own
since 2020
• 1 failed attempt in 2021

• Samsung Galaxy S21

• Successful attempts in 2023 and 2024
• Xiaomi 13 Pro

• Samsung Galaxy S24

$whoami> Ken Gannon / 伊藤剣

• 28 devices in scope
• 3 mobile devices

• No Xiaomi devices yay!

• 25 non-mobile devices
• IoT devices like printers, cameras, and smart

speakers

• WhatsApp was also in scope

Pwn2Own Ireland 2024 Targets

• 61 entries targeting the IoT and SoHo
devices

• 1 entry targeting a mobile device
(me!!!!!)

Pwn2Own Ireland 2024 Targets

• 61 entries targeting the IoT and SoHo
devices

• 1 entry targeting a mobile device
(me!!!!!)

Pwn2Own Ireland 2024 Targets

BUT WHY ONLY ONE
PHONE ENTRY!?

• Some fun stats about
hacking Samsung
devices in previous
Pwn2Own
competitions:
• 2023 – Samsung Galaxy

S23 pwned 4 times, all
through the Galaxy App
Store

• 2022 – Samsung Galaxy
S22 pwned 4 times, all
through the Galaxy App
Store

Approach To Attacking The Galaxy S25

• My own failed attempt from 2021 relied on the
Galaxy App Store as the initial entry point

Approach To Attacking The Galaxy S25

Samsung Galaxy App Store Code - 2023

WARNING
THIS IS JUST MY PERSONAL THEORY

Samsung Galaxy App Store Code - 2024

WARNING
THIS IS JUST MY PERSONAL THEORY

• “Download code” is now missing throughout the entire app

Two Paths For Pwn2Own 2024

• Web app vulns are
easy to find

• But Samsung will see
all of my payloads

• And I was living in the
Philippines at the time
with not-reliable
internet…

• Samsung can’t see
the payloads I use
against the apps

• But there’s a lot of
fucking apps…
• I suck at coding and

my automation tools
suck…

The Plan

• In the end, opted
to look through
the Samsung
applications

• The plan:
• Find a browsable

Intent exploit

• ???

• Profit!

The Plan

• In the end, opted
to look through
the Samsung
applications

• The plan:
• Find a browsable

Intent exploit

• ???

• Profit!

The Plan

• In the end, opted
to look through
the Samsung
applications

• The plan:
• Find a browsable

Intent exploit

• ???

• Profit!

The Plan

• In the end, opted
to look through
the Samsung
applications

• The plan:
• Find a browsable

Intent exploit

• ???

• Profit!

The Plan

• In the end, opted
to look through
the Samsung
applications

• The plan:
• Find a browsable

Intent exploit

• ???

• Profit!

Initial Entry Point – Samsung
Gaming Hub

• Package -
`com.samsung.android.game.gamehome`

• Version pwned - 7.1.01.7

Samsung Gaming Hub

• What this app does:
• Browse games available on the Galaxy

App Store

• Play Cloud Hosted games

• Other important information
• Does contain WebView Activities with

JavaScript Bridge Interfaces

• Does have services that runs in the
foreground

• Does have some Samsung custom
permissions

• Cannot install applications
• Lacks the proper permission

• CVE-2024-49419

• Given the right Browsable Intent,
`GmpWebActivity` can be forced to load
any URL in its WebView

Bug 1 – Launch arbitrary URL in `GmpWebActivity`

• CVE-2024-49419

• Given the right Browsable Intent,
`GmpWebActivity` can be forced to load
any URL in its WebView

Bug 1 – Launch arbitrary URL in `GmpWebActivity`

• CVE-2024-49419

• Given the right Browsable Intent,
`GmpWebActivity` can be forced to load
any URL in its WebView

Bug 1 – Launch arbitrary URL in `GmpWebActivity`

Absolutely No URL
Filtering

Exploit Code for Bug 1

Browsable Intent hosted at attacker’s web server

Bug 1 Being Exploited

Samsung Gaming Hub’s WebView opened to https://nccgroup.com

The Plan

The Plan

The Plan

The Plan

• CVE-2024-49418

• The loaded WebView will enable or
disabled JavaScript based on the URL
• So there IS code that checks for a proper

URL…

Bug 2 – URL Check Bypass

Bug 2 – URL Check Bypass

Sets up the `WebView`

Bug 2 – URL Check Bypass

Enable JavaScript :o

Bug 2 – URL Check Bypass

Lets make `F(str)`
return `True`

Bug 2 – URL Check Bypass

Returns `True` if
`h(url)` returns True

Bug 2 – URL Check Bypass

Lets make `e(url)`
return `True`

Bug 2 – URL Check Bypass

Kotlin `string.startsWith(string)`

URL must start with:
• https://us.mcsvc.samsung.com
• https://d2da9i65hvaere.cloudfront.net/
• https://gmp.samsungapps.com

• https://img.samsungapps.com/
• https://d1559sbyyf3apa.cloudfront.net/
• https://smax.samsungapps.com
• https://d2da9i65hvaere.cloudfront.net/

Only some URLs had slashes at the end…

Bug 2 – URL Check Bypass

Kotlin `string.startsWith(string)`

You know what starts with https://us.mcsvc.samsung.com?

https://us.mcsvc.samsung.com.maliciouserection.com

Exploit Code for Bugs 1 and 2

Browsable Intent hosted at attacker’s web server

Bugs 1 and 2 Being Exploited

Samsung Gaming Hub’s WebView opened to https://us.mcsvc.samsung.com.maliciouserection.com

The Plan

The Plan

The Plan

The Plan

• CVE-2024-49420

• Gaming Hub can be forced to run
`startActivity(Intent)` against an
Intent object that an attacker specifies
• In other words, you can force Gaming Hub

to start any exported Activity on the device

Bug 3 – Launch Arbitrary Exported Activity

Bug 3 – Launch Arbitrary Exported Activity

Executes whenever the WebView
receives a 302 Redirect from
the web server

Bug 3 – Launch Arbitrary Exported Activity

Checks if the redirected URL
starts with `intent://`

Bug 3 – Launch Arbitrary Exported Activity

`intent://` Uri is converted to
an Intent object

Bug 3 – Launch Arbitrary Exported Activity

Intent object is passed to…

Bug 3 – Launch Arbitrary Exported Activity

A `startAcitivty(intent)` execution :D

• Since we can point the WebView to an
arbitrary URL, we can load a web
server that responds with a 302
Redirect to an `intent://` location

• Since we can execute JavaScript, we
can repeatedly make GET requests
with `location.href`

• Attacker’s web page = a “C2 channel”
which tells Gaming Hub what Activity
to launch next

Bug 3 – Launch Arbitrary Exported Activity

Exploit Code for Bugs 1, 2, and 3

Browsable Intent hosted at attacker’s web server

Exploit Code for Bugs 1, 2, and 3

HTML hosted at https://us.mcsvc.samsung.com.maliciouserection.com

Exploit Code for Bugs 1, 2, and 3

Drozer isn’t installed yet…

Python Flask web server

The Plan

The Plan

The Plan

The Plan

The Plan

• Good News: we are no longer limited to
just Browsable Activities. We can
launch any exported Activity!

Good and Bad News

• Bad News: the attack surface just
WIDENED THE FUCK UP

• Before:
• 413 different Browsable Activities

• 303 different URI combinations

• 74 different packages

• After:
• 2219 different exported Activities

• With `null` permissions

• 255 different packages

• Good News: we are no longer limited to
just Browsable Activities. We can
launch any exported Activity!

Good and Bad News

• Bad News: the attack surface just
WIDENED THE FUCK UP

• Before:
• 413 different Browsable Activities

• 303 different URI combinations

• 74 different packages

• After:
• 2219 different exported Activities

• 255 different packages

Second Big Breakthrough –
Samsung Smart Switch Agent

• Package -
`com.sec.android.easyMover.Agent`

• Version pwned - 2.0.02.24

Samsung Smart Switch Agent

• What this app does:
• Works with Smart Switch application to

move your files from your old phone to a
new phone

• Smart Switch Agent is essentially a background
service for Smart Switch

• Other important information
• Can install applications

• No WebViews

• Has only 1 exported Activity, which is
protected by a Samsung custom
permission

• Does not have access to the `/sdcard`
area

• This is important I promise

Samsung Smart Switch Agent

Smart Switch Agent has
1 exported Activity
protected by a custom
permission

Gaming Hub uses that
same permission…

• CVE-2024-49413

• Can install any `.apk` file that resides
on disk or hosted from a Content
Provider

• Application does not check the
signature of the `.apk` file before
installation

Bug 4 – Lack of Signature Verification

Bug 4 – Lack of Signature Verification

Intent String Extra `ssm_uri`
is saved in Class `c` as static
variable `k`

`ssm_uri` can either be a
location on disk (`file://`)
or a Content Provider URI
(`content://`)

Bug 4 – Lack of Signature Verification

Static variable
`k`(`ssm_uri`) is then read
in Class `N3`

Bug 4 – Lack of Signature Verification

Downloads an `.apk` file at
the location specified by
the Intent String Extra
`ssm_uri`

Bug 4 – Lack of Signature Verification

Downloaded file is saved as
`file:///data/data/com.sec.android.easyMover.Agent/
files/SmartSwitchMobile.apk`

• The application will then blindly install
`SmartSwitchMobile.apk`
• Based on the name of the `.apk` and the

`Logcat` strings, I have to assume that
Smart Switch Agent assumes that
`SmartSwitchMobile.apk` is supposed to
be an updated version of Smart Switch

• So to exploit this, issue we need either:
• A Content Provider that hosts the Drozer

`.apk` file OR

• Plant the Drozer `.apk` file on disk at a
location accessible by Smart Switch Agent

Bug 4 – Lack of Signature Verification

Exploit Code for Bugs 1, 2, 3, and 4

HTML hosted at https://us.mcsvc.samsung.com.maliciouserection.com

Exploit Code for Bugs 1, 2, 3, and 4

Drozer isn’t installed yet…

Still need to place the Drozer `.apk`file on the device…

Python Flask web server

The Plan

The Plan

The Plan

The Plan

The Plan

The Plan

YayContentProviderYay…

• So now both exported Activities and
Content Providers are in
scope…yaaaaaaaaaaaaaaay…

• Exported Activity stats:
• 2219 different exported Activities

• With `null` permissions

• 255 different packages

• Exported Content Provider stats
• 342 different exported Content Providers

• With `null` read permissions

• 133 different packages

• Total: 2561 different exported
components

• Looking through the Content Providers,
two interesting applications came up:
• GPUWatch (com.samsung.gpuwatchapp)

• Google TV (com.google.android.videos)

• This application comes with all
flagship Samsung phones

• Supposed to let developers see GPU
activity while developing games

• Log files are stored in
`/sdcard/GPUWatch_Dump/html/`
which can be retrieved via Content
provider `content://com.samsung.
gpuwatchapp.HtmlDumpProvider
/<file>`

GPUWatch

• Google TV contain an interesting Path Traversal vulnerability
• Version exploited: 4.39.2590.678247678.4-release

• CVE Pending

• I could only exploit it if:
• The linked Google Account was linked to a Google Family AND

• The family group had purchased movies / TV shows in the past AND

• After opening the application, the user goes to the Highlights section of the
application at least once

Google TV

• Using JavaScript fuckery, it was possible to download the Drozer `.apk` file into
`/sdcard/Downloads/`

• So the Google TV exploit is perfect! I can use this to retrieve the Drozer `.apk` file!

Google TV

• Using JavaScript fuckery, it was possible to download the Drozer `.apk` file into
`/sdcard/Downloads/`

• So the Google TV exploit is perfect! I can use this to retrieve the Drozer `.apk` file!

• …except FUCKING GOOGLE TV DIDN’T HAVE ACCESS TO THE `/sdcard/` AREA!
FUCK!

Google TV

• October 5th rolls around

• Pwn2Own is 2 weeks away

• I have 4/5 of a full exploit chain

• All exported Content Providers have
been looked at

• So now I’m back to looking at exported
Activities

Back to the grind…

• I start looking at the application
Samsung Quick Share
• Samsung’s method of transferring files

between Samsung devices

• Google / Android has actually merged
Samsung Quick Share into Android Nearby
Share, creating the new application
Android Quick Share

• But Samsung Quick Share is still its own
thing

Back to the grind…

• Samsung Quick Share has the ability to
share files via QR code
• I think this is now also in

Android Quick Share?

• When sharing files via QR code, you’re
supposed to physically use the receiver
phone to scan the sender’s QR code

Back to the grind…

• The Activity which
receives the QR code
data is exported

• If a 3rd party application
opens this Activity and
provides the QR code
data, then Samsung
Quick Share will
automatically download
the file without user
approval

Back to the grind…

Back to the grind…

• URI:
https://quickshare.samsungcloud.com/kvqpsbyNG5WW
• Share code: kvqpsbyNG5WW

• …but the files get placed in
`/sdcard/Downloads/Quick Share/`

• FUCKING GOOGLE TV AND SMART
SWITCH AGENT DOESN’T HAVE
ACCESS TO `/sdcard/`

Back to the grind…

• Well that's neat! You can force the
phone to download files from another
phone nearby!

• The plan: force the target phone to
download the Drozer `.apk` file from
an attacker phone

• That was the last interesting thing I
found before I went to bed that night
• “It’s a cool finding though…”

• “The transfer probably happens over
Bluetooth…”

• “Its interesting that the phone
automatically connects to an attacker’s
phone…”

• “…connects to an attacker’s phone…”

• “…attacker controlled phone…”

YayContentProviderYay….

• adsfsfd

• adsfsfd

• adsfsfdCONNECTS TO AN ATTACKER
CONTROLLED PHONE

CAN THE ATTACKER MODIFY
WHERE THE FILE IS SAVED!?

Last App Exploited –
Samsung Quick Share Agent

• Package –
com.samsung.android.aware.service

• Version pwned - 3.5.19.33

Samsung Quick Share Agent

• What this app does:
• Works with Samsung Quick Share to

transfer files from one phone to another
• Samsung Quick Share is the UI, while Samsung

Quick Share Agent is the background service

• Other important information

• At a high level, this is how sharing files
with Samsung Quick Share worked

Samsung Quick Share Agent

• At a high level, this is how sharing files
with Samsung Quick Share worked
• Socket connection is established between

the two phones

Samsung Quick Share Agent

• At a high level, this is how sharing files
with Samsung Quick Share worked
• Socket connection is established between

the two phones

• “Transfer Information” is sent to the
receiver phone

Samsung Quick Share Agent

• At a high level, this is how sharing files
with Samsung Quick Share worked
• Socket connection is established between

the two phones

• “Transfer Information” is sent to the
receiver phone

• “File Information” is sent to the receiver
phone

Samsung Quick Share Agent

• At a high level, this is how sharing files
with Samsung Quick Share worked
• Socket connection is established between

the two phones

• “Transfer Information” is sent to the
receiver phone

• “File Information” is sent to the receiver
phone

• File is sent to the receiver phone

Samsung Quick Share Agent

• At a high level, this is how sharing files
with Samsung Quick Share worked
• Socket connection is established between

the two phones

• “Transfer Information” is sent to the
receiver phone

• “File Information” is sent to the receiver
phone

• File is sent to the receiver phone

• File is saved to
`/sdcard/Android/data/com.samsung.andr
oid.aware.service/files/<requestId>/`

Samsung Quick Share Agent

• At a high level, this is how sharing files
with Samsung Quick Share worked
• Socket connection is established between

the two phones

• “Transfer Information” is sent to the
receiver phone

• “File Information” is sent to the receiver
phone

• File is sent to the receiver phone

• File is saved to
`/sdcard/Android/data/com.samsung.andr
oid.aware.service/files/<requestId>/`

• File is moved to `/sdcard/Download/Quick
Share/`

Samsung Quick Share Agent

• At a high level, this is how sharing files
with Samsung Quick Share worked
• Socket connection is established between

the two phones

• “Transfer Information” is sent to the
receiver phone

• “File Information” is sent to the receiver
phone

• File is sent to the receiver phone

• File is saved to
`/sdcard/Android/data/com.samsung.andr
oid.aware.service/files/<requestId>/`

• File is moved to `/sdcard/Download/Quick
Share/`

• “Close Session” is sent to the receiver
phone

Samsung Quick Share Agent

• At a high level, this is how sharing files
with Samsung Quick Share worked
• Socket connection is established between

the two phones

• “Transfer Information” is sent to the
receiver phone

• “File Information” is sent to the receiver
phone

• File is sent to the receiver phone

• File is saved to
`/sdcard/Android/data/com.samsung.andr
oid.aware.service/files/<requestId>/`

• File is moved to `/sdcard/Download/Quick
Share/`

• “Close Session” is sent to the receiver
phone

Samsung Quick Share Agent

Samsung Quick Share Agent

• The “File Information” data
contained the file name

• Frida script to change the file name so
that it contains `../` characters

Samsung Quick Share Agent

• Code for sure sanitizes out
`../` characters in the
“Name” and “Path” fields

Samsung Quick Share Agent

• …wait what is that….

• …the “Name” and “Path”
fields don’t get sanitized
here

Samsung Quick Share Agent

• Lets make `x()` return
“True” so `../` does not get
sanitized

Samsung Quick Share Agent

• `x()` returns True if `h` is True

Samsung Quick Share Agent

• `h` is set based on `J(boolean)`

• The argument passed to
`J(boolean)`is based on
`isPrivateShare`!?!?!?

Samsung Quick Share Agent

• There are two types of shares: Normal
and Private

• Normal – files are unencrypted and
automatically uploaded to a Samsung
server for temporary storage

• Private – files are encrypted and only
stay on the sender and receiver phones
• So nothing is uploaded to Samsung’s

servers

Private Share?

• I have no idea how Private Share
actually works ¯_(ツ)_/¯

• What mattered though is:
• The “Private Share” parameter is sent via

the “Transfer Information” data

• The attacker phone can just declare a
“Private Share” without actually creating a
“Private Share” connection

• This is enough to bypass the `../`
sanitization

• So we just need to make sure
`isPrivateShare` = `true` all the time

Samsung Quick Share Agent

• CVE-2024-49421

• A path traversal vulnerability that
lets an attacker write a file to an
arbitrary location

Bug 5 – Write Any Location Via Path Traversal

• To exploit this bug, I needed
another rooted Samsung phone
nearby with a Frida script / Xposed
module which:
• Changed `IsPrivateShare` to True

• Add `../` characters to either the
`Name` or `Path` variable

Bug 5 – Write Any Location Via Path Traversal

My rooted
attacker
S24 phone Target

S24 phone

Bug 5 – Write Any Location Via Path Traversal

• Frida script that needs to run on the
attacker phone
• `IsPriavateShare` is forced to `True`

• Remember GPUWatch? And how it
had an exported Content Provider
that serves files at
`/sdcard/GPUWatch_Dump/html`

• Lets force the victim phone to save
the `.apk` file in that directory

Bug 5 – Write Any Location Via Path Traversal

• `.apk` file can
now be
downloaded
from
GPUWatch’s
Content
Provider

Exploit Code for All Exploits

HTML hosted at
https://us.mcsvc.samsung.com.maliciouserection.com

Exploit Code for All Exploits

URI points to GPUWatch Content Provider

Download yay.apk from attacker controlled phone

Python Flask web server at yayc2channelyay.com

Launch the Drozer application!!!!

The Plan

The Plan

The Plan

The Plan

The Plan

The Plan

The Plan

The Plan

The Plan

The Plan

• Tools used for this research
• YayPentestMagiskModuleYay -

https://github.com/MaliciousErection/YayPentestMagiskModuleYay

• Drozer
• Console - https://github.com/yogehi/drozer or

https://github.com/ReversecLabs/drozer

• Agent - https://github.com/MaliciousErection/drozer-agent-maliciouserection

• Jadx - https://github.com/skylot/jadx

• ByteCode Viewer - https://github.com/Konloch/bytecode-viewer/

• BurpSuite Pro - https://portswigger.net/burp

• Magisk - https://github.com/topjohnwu/Magisk

• Frida - https://github.com/frida/frida

• Objection - https://github.com/sensepost/objection

• Xposed / LSPosed - https://github.com/LSPosed/LSPosed

Yay Ending Yay

	Slide 1: Chainspotting 2: The Unofficial Sequel to the 2018 Talk "Chainspotting"
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Initial Entry Point – Samsung Gaming Hub
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58: Second Big Breakthrough – Samsung Smart Switch Agent
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90: Last App Exploited – Samsung Quick Share Agent
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127

